open Bwd open Bwd.Infix module A = Ast module S = Syntax module D = Domain module R = Reporter (* TODO: REALLY improve error messages *) (* `None` means that an underscore was used in the binder *) (* TODO: actually implement this *) type local_name = Yuujinchou.Trie.path option (* invariant: `tps`, `tms` and `names` all have length `size` *) type env = { tps : D.env; tms : D.env; names : local_name bwd; size : int; } module Eff = Algaeff.Reader.Make (struct type nonrec t = env end) (** General helpers *) let lookup_name name : D.t * S.t = let env = Eff.read() in match Bwd.find_index ((=) (Some name)) env.names with | Some ix -> let tp = Bwd.nth env.tps ix in let tm = Quote.quote ~size:env.size (Bwd.nth env.tms ix) in (tp, tm) | None -> R.fatalf R.Message.UnboundVariable "unbound variable @[%a@]" S.Pretty.pp_name name let define ~(name : A.raw_ident) ~(tp : D.t) ~(tm : D.t) f = let update env = { tps = env.tps <: tp; tms = env.tms <: tm; names = env.names <: Some name; size = env.size + 1; } in Eff.scope update f let bind ~(name : A.raw_ident) ~(tp : D.t) f = let arg = D.var (Eff.read()).size in define ~name ~tp ~tm:arg (fun () -> f arg) (** NbE helpers *) let eval tm = Eval.eval ~env:(Eff.read()).tms tm (** Evaluate under the current environment augmented by `arg` *) (* TODO: this is kind of inelegant, can we do better? *) let eval_at arg = Eval.eval ~env:((Eff.read()).tms <: arg) let quote v = Quote.quote ~size:(Eff.read()).size v (** Main algorithm *) let rec check ~(tm : A.expr) ~(tp : D.t) : S.t = R.tracef ?loc:tm.loc "when checking against the type @[%a@]" Syntax.Pretty.pp (quote tp) @@ fun () -> match tm.value with | A.Pi ((name, base), fam) -> begin match tp with | D.Type -> let base = check ~tm:base ~tp in let fam = bind ~name:name.value ~tp:(eval base) @@ fun _ -> check ~tm:fam ~tp in S.Pi (base, fam) | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of a universe" Syntax.Pretty.pp (quote tp) end | A.Lam (name, body) -> begin match tp with | D.Pi (base, fam) -> let body = bind ~name:name.value ~tp:base @@ fun arg -> let fib = Eval.inst_clo fam arg in check ~tm:body ~tp:fib in S.Lam body | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of a Pi type" Syntax.Pretty.pp (quote tp) end | A.Sg ((name, base), fam) -> begin match tp with | D.Type -> let base = check ~tm:base ~tp in let fam = bind ~name:name.value ~tp:(eval base) @@ fun _ -> check ~tm:fam ~tp in S.Sg (base, fam) | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of a universe" Syntax.Pretty.pp (quote tp) end | A.Pair (fst, snd) -> begin match tp with | D.Sg (base, fam) -> let fst = check ~tm:fst ~tp:base in let fib = Eval.inst_clo fam (eval fst) in let snd = check ~tm:snd ~tp:fib in S.Pair (fst, snd) | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of a Sigma type" Syntax.Pretty.pp (quote tp) end | A.Type -> begin match tp with (* TODO type-in-type *) | D.Type -> S.Type | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of a universe" Syntax.Pretty.pp (quote tp) end | A.Bool -> begin match tp with | D.Type -> S.Bool | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of a universe" Syntax.Pretty.pp (quote tp) end | A.True -> begin match tp with | D.Bool -> S.True | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of type Bool" Syntax.Pretty.pp (quote tp) end | A.False -> begin match tp with | D.Bool -> S.False | _ -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of type Bool" Syntax.Pretty.pp (quote tp) end | _ -> let (inferred_tp, tm) = infer tm in begin try Conversion.equate ~size:((Eff.read()).size) inferred_tp tp with | Conversion.Unequal -> R.fatalf R.Message.IllTyped "expected an element of type @[%a@], but found an element of type @[%a@]" Syntax.Pretty.pp (quote tp) Syntax.Pretty.pp (quote inferred_tp) end; tm and infer (tm : A.expr) : D.t * S.t = R.tracef ?loc:tm.loc "when inferring the type" @@ fun () -> match tm.value with | A.Var name -> lookup_name name | A.Check (tm, tp) -> let tp = eval @@ check ~tp:D.Type ~tm:tp in let tm = check ~tp ~tm in (tp, tm) | A.App (fn, arg) -> begin match infer fn with | (D.Pi (base, fam), fn) -> let arg = check ~tm:arg ~tp:base in let tp = Eval.inst_clo fam (eval arg) in let tm = S.App (fn, arg) in (tp, tm) | _ -> R.fatalf R.Message.IllTyped "cannot apply this term because it is not a function" end | A.Fst p -> begin match infer p with | (D.Sg (base, _), p) -> (base, S.Fst p) | _ -> R.fatalf R.Message.IllTyped "cannot apply first projection to this term because it is not of sigma type" end | A.Snd p -> begin match infer p with | (D.Sg (_, fam), p) -> let tp = Eval.inst_clo fam (eval (S.Fst p)) in let tm = S.Snd p in (tp, tm) | _ -> R.fatalf R.Message.IllTyped "cannot apply second projection to this term because it is of sigma type" end | A.BoolElim { motive_var; motive_body; true_case; false_case; scrut } -> let scrut = check ~tm:scrut ~tp:D.Bool in let motive = bind ~name:motive_var.value ~tp:D.Bool @@ fun _ -> check ~tm:motive_body ~tp:D.Type in let motive_true = eval_at D.True motive in let motive_false = eval_at D.False motive in let motive_scrut = eval_at (eval scrut) motive in let true_case = check ~tm:true_case ~tp:motive_true in let false_case = check ~tm:false_case ~tp:motive_false in let tm = S.BoolElim { motive; true_case; false_case; scrut } in (motive_scrut, tm) | _ -> R.fatalf R.Message.CannotInferType "cannot infer type" let empty_env : env = { tps = Emp; tms = Emp; names = Emp; size = 0; } let infer_toplevel (tm : A.expr) = Eff.run ~env:empty_env @@ fun () -> infer tm