summary refs log tree commit diff
path: root/aufgabe3/src/main.rs
blob: 8c32ec1070833e356242481df527e7ae51bd31fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use std::env;
use std::fmt::Display;
use std::fs;
use std::process;
use std::str::FromStr;

fn main() {
    let task_file_name = match env::args().nth(1) {
        Some(x) => x,
        None => {
            eprintln!("Nutzung: aufgabe3 <dateiname>");
            process::exit(1);
        }
    };
    let task_str = fs::read_to_string(task_file_name).expect("Datei kann nicht gelesen werden");
    let task = Task::try_from(task_str.as_str()).expect("Datei enthält keine gültige Aufgabe");
    let solution = solve_task(&task);
    println!("{}", solution)
}

struct Task {
    number: HexNumber,
    max_moves: u32,
}

struct Solution {
    states: Vec<SevenSegmentDisplayRow>,
}

fn solve_pt1(task: &Task) -> Vec<HexDigit> {
    fn solve_pt1_internal(
        state: &[HexDigit],
        segment_balance: i32,
        segment_flips_left: u32,
        free_segments_left: u32,
    ) -> Option<Vec<HexDigit>> {
        if segment_balance.abs() as u32 > segment_flips_left {
            return None;
        }
        if segment_balance > free_segments_left as i32 {
            return None;
        }
        match state.split_first() {
            None => match segment_balance {
                0 => Some(Vec::new()),
                _ => None,
            },
            Some((digit, rest)) => {
                for candidate_digit in (0x0..=0xF).rev().map(HexDigit) {
                    let digit_num_segments = digit.num_segments();
                    let segment_num_difference =
                        digit_num_segments as i32 - candidate_digit.num_segments() as i32;
                    let new_segment_balance = segment_balance + segment_num_difference;
                    let num_required_segment_flips =
                        digit.num_required_segment_flips(&candidate_digit);
                    let new_segment_flips_left =
                        match segment_flips_left.checked_sub(num_required_segment_flips) {
                            None => continue,
                            Some(x) => x,
                        };
                    let new_free_segments_left = free_segments_left - (7 - digit_num_segments);
                    match (new_segment_flips_left, new_segment_balance) {
                        (0, 0) => {
                            let mut ret = vec![candidate_digit];
                            ret.append(&mut rest.to_vec());
                            return Some(ret);
                        }
                        (0, _) => continue,
                        (_, _) => {
                            let mut new_rest = match solve_pt1_internal(
                                rest,
                                new_segment_balance,
                                new_segment_flips_left,
                                new_free_segments_left,
                            ) {
                                None => continue,
                                Some(x) => x,
                            };
                            let mut ret = vec![candidate_digit];
                            ret.append(&mut new_rest);
                            return Some(ret);
                        }
                    }
                }
                None
            }
        }
    }

    let max_segment_flips = 2 * task.max_moves;
    let initial_free_segments = task
        .number
        .digits
        .iter()
        .fold(0, |acc, digit| acc + (7 - digit.num_segments()));
    solve_pt1_internal(
        task.number.digits.as_slice(),
        0,
        max_segment_flips,
        initial_free_segments,
    )
    .unwrap()
}

// TODO: darstellung darf nie komplett geleert werden
fn solve_pt2(start: &[HexDigit], end: &[HexDigit]) -> Vec<SevenSegmentDisplayRow> {
    let start_state = start.into_iter().map(|digit| digit.to_seven_segments());
    let end_state = end.into_iter().map(|digit| digit.to_seven_segments());

    struct Coordinate {
        digit_idx: usize,
        segment_idx: usize,
    }

    let mut on_flips: Vec<Coordinate> = Vec::new();
    let mut off_flips: Vec<Coordinate> = Vec::new();

    for (digit_idx, (segments_start, segments_end)) in
        start_state.clone().zip(end_state).enumerate()
    {
        for (segment_idx, (segment_start, segment_end)) in segments_start
            .0
            .into_iter()
            .zip(segments_end.0.into_iter())
            .enumerate()
        {
            match (segment_start, segment_end) {
                (false, true) => on_flips.push(Coordinate {
                    digit_idx,
                    segment_idx,
                }),
                (true, false) => off_flips.push(Coordinate {
                    digit_idx,
                    segment_idx,
                }),
                _ => {}
            }
        }
    }

    assert_eq!(on_flips.len(), off_flips.len());

    let start_state: Vec<SevenSegmentDisplay> = start_state.collect();
    let mut ret = vec![SevenSegmentDisplayRow {
        displays: start_state.clone(),
    }];

    let mut current_state = start_state;
    for (on_flip, off_flip) in on_flips.into_iter().zip(off_flips.into_iter()) {
        current_state[on_flip.digit_idx].0[on_flip.segment_idx] = true;
        current_state[off_flip.digit_idx].0[off_flip.segment_idx] = false;
        ret.push(SevenSegmentDisplayRow {
            displays: current_state.clone(),
        })
    }

    ret
}

fn solve_task(task: &Task) -> Solution {
    let greatest_possible_number = solve_pt1(task);
    let states = solve_pt2(&task.number.digits, &greatest_possible_number);

    Solution { states }
}

impl TryFrom<&str> for Task {
    type Error = ();

    fn try_from(value: &str) -> Result<Self, Self::Error> {
        let mut lines = value.lines();
        let number_str = lines.next().ok_or(())?;
        let max_moves_str = lines.next().ok_or(())?;
        let number = HexNumber::try_from(number_str)?;
        let max_moves = u32::from_str(max_moves_str).map_err(|_| ())?;

        Ok(Task { number, max_moves })
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct HexDigit(u8);

impl TryFrom<char> for HexDigit {
    type Error = ();

    fn try_from(c: char) -> Result<Self, Self::Error> {
        match c {
            '0' => Ok(Self(0x0)),
            '1' => Ok(Self(0x1)),
            '2' => Ok(Self(0x2)),
            '3' => Ok(Self(0x3)),
            '4' => Ok(Self(0x4)),
            '5' => Ok(Self(0x5)),
            '6' => Ok(Self(0x6)),
            '7' => Ok(Self(0x7)),
            '8' => Ok(Self(0x8)),
            '9' => Ok(Self(0x9)),
            'A' => Ok(Self(0xA)),
            'B' => Ok(Self(0xB)),
            'C' => Ok(Self(0xC)),
            'D' => Ok(Self(0xD)),
            'E' => Ok(Self(0xE)),
            'F' => Ok(Self(0xF)),
            _ => Err(()),
        }
    }
}

// reihenfolge wie hier: https://en.wikipedia.org/wiki/Seven-segment_display#/media/File:7_Segment_Display_with_Labeled_Segments.svg
#[derive(Clone, Copy, PartialEq, Eq)]
struct SevenSegmentDisplay([bool; 7]);

impl SevenSegmentDisplay {
    fn to_unicode(&self) -> [[char; 2]; 3] {
        let s = self.0;
        [
            [
                match (s[0], s[5]) {
                    (false, false) => ' ',
                    (false, true) => '╻',
                    (true, false) => '╺',
                    (true, true) => '┏',
                },
                match (s[0], s[1]) {
                    (false, false) => ' ',
                    (false, true) => '╻',
                    (true, false) => '╸',
                    (true, true) => '┓',
                },
            ],
            [
                match (s[4], s[5], s[6]) {
                    (false, false, false) => ' ',
                    (false, false, true) => '╺',
                    (false, true, false) => '╹',
                    (false, true, true) => '┗',
                    (true, false, false) => '╻',
                    (true, false, true) => '┏',
                    (true, true, false) => '┃',
                    (true, true, true) => '┣',
                },
                match (s[1], s[2], s[6]) {
                    (false, false, false) => ' ',
                    (false, false, true) => '╸',
                    (false, true, false) => '╻',
                    (false, true, true) => '┓',
                    (true, false, false) => '╹',
                    (true, false, true) => '┛',
                    (true, true, false) => '┃',
                    (true, true, true) => '┫',
                },
            ],
            [
                match (s[3], s[4]) {
                    (false, false) => ' ',
                    (false, true) => '╹',
                    (true, false) => '╺',
                    (true, true) => '┗',
                },
                match (s[2], s[3]) {
                    (false, false) => ' ',
                    (false, true) => '╸',
                    (true, false) => '╹',
                    (true, true) => '┛',
                },
            ],
        ]
    }
}

impl HexDigit {
    fn to_seven_segments(&self) -> SevenSegmentDisplay {
        let segments = match self.0 {
            0x0 => [true, true, true, true, true, true, false],
            0x1 => [false, true, true, false, false, false, false],
            0x2 => [true, true, false, true, true, false, true],
            0x3 => [true, true, true, true, false, false, true],
            0x4 => [false, true, true, false, false, true, true],
            0x5 => [true, false, true, true, false, true, true],
            0x6 => [true, false, true, true, true, true, true],
            0x7 => [true, true, true, false, false, false, false],
            0x8 => [true, true, true, true, true, true, true],
            0x9 => [true, true, true, true, false, true, true],
            0xA => [true, true, true, false, true, true, true],
            0xB => [false, false, true, true, true, true, true],
            0xC => [true, false, false, true, true, true, false],
            0xD => [false, true, true, true, true, false, true],
            0xE => [true, false, false, true, true, true, true],
            0xF => [true, false, false, false, true, true, true],
            _ => unreachable!(),
        };
        SevenSegmentDisplay(segments)
    }

    // TODO: lookup table?
    fn num_segments(&self) -> u32 {
        self.to_seven_segments()
            .0
            .into_iter()
            .filter(|x| *x)
            .count() as u32
    }

    fn num_required_segment_flips(&self, other: &Self) -> u32 {
        self.to_seven_segments()
            .0
            .into_iter()
            .zip(other.to_seven_segments().0.into_iter())
            .filter(|(segment_self, segment_other)| *segment_self != *segment_other)
            .count() as u32
    }
}

// in lesereihenfolge
struct HexNumber {
    digits: Vec<HexDigit>,
}

struct SevenSegmentDisplayRow {
    displays: Vec<SevenSegmentDisplay>,
}

impl Display for SevenSegmentDisplayRow {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let displays_as_unicode: Vec<[[char; 2]; 3]> = self
            .displays
            .iter()
            .map(|display| display.to_unicode())
            .collect();

        for row_idx in 0..3 {
            for unicode_digit in displays_as_unicode.iter() {
                let row = unicode_digit[row_idx].into_iter().collect::<String>();
                write!(f, "{}", row)?;
            }
            writeln!(f, "")?;
        }

        Ok(())
    }
}

impl Display for Solution {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        for state in &self.states {
            state.fmt(f)?;
        }
        Ok(())
    }
}

impl TryFrom<&str> for HexNumber {
    type Error = ();

    fn try_from(value: &str) -> Result<Self, Self::Error> {
        let digits = value
            .chars()
            .map(|c| HexDigit::try_from(c))
            .collect::<Result<Vec<HexDigit>, ()>>()?;

        Ok(HexNumber { digits })
    }
}